crypt-md5.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /*
  2. * This is an implementation of the RSA Data Security, Inc. * MD5
  3. * Message-Digest Algorithm (RFC 1321).
  4. *
  5. * Homepage:
  6. * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
  7. *
  8. * Author:
  9. * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
  10. *
  11. * This software was written by Alexander Peslyak in 2001. No copyright is
  12. * claimed, and the software is hereby placed in the public domain.
  13. * In case this attempt to disclaim copyright and place the software in the
  14. * public domain is deemed null and void, then the software is
  15. * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
  16. * general public under the following terms:
  17. *
  18. * Redistribution and use in source and binary forms, with or without
  19. * modification, are permitted.
  20. *
  21. * There's ABSOLUTELY NO WARRANTY, express or implied.
  22. *
  23. * (This is a heavily cut-down "BSD license".)
  24. *
  25. * This differs from Colin Plumb's older public domain implementation in that
  26. * no exactly 32-bit integer data type is required (any 32-bit or wider
  27. * unsigned integer data type will do), there's no compile-time endianness
  28. * configuration, and the function prototypes match OpenSSL's. No code from
  29. * Colin Plumb's implementation has been reused; this comment merely compares
  30. * the properties of the two independent implementations.
  31. *
  32. * The primary goals of this implementation are portability and ease of use.
  33. * It is meant to be fast, but not as fast as possible. Some known
  34. * optimizations are not included to reduce source code size and avoid
  35. * compile-time configuration.
  36. */
  37. #include "mupdf/fitz.h"
  38. #include <string.h>
  39. /*
  40. * The basic MD5 functions.
  41. *
  42. * F and G are optimized compared to their RFC 1321 definitions for
  43. * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
  44. * implementation.
  45. */
  46. #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
  47. #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
  48. #define H(x, y, z) (((x) ^ (y)) ^ (z))
  49. #define H2(x, y, z) ((x) ^ ((y) ^ (z)))
  50. #define I(x, y, z) ((y) ^ ((x) | ~(z)))
  51. /*
  52. * The MD5 transformation for all four rounds.
  53. */
  54. #define STEP(f, a, b, c, d, x, t, s) \
  55. (a) += f((b), (c), (d)) + (x) + (t); \
  56. (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
  57. (a) += (b)
  58. /*
  59. * SET reads 4 input bytes in little-endian byte order and stores them in a
  60. * properly aligned word in host byte order.
  61. */
  62. #define SET(n) \
  63. (block[(n)] = \
  64. (uint32_t)ptr[(n) * 4] | \
  65. ((uint32_t)ptr[(n) * 4 + 1] << 8) | \
  66. ((uint32_t)ptr[(n) * 4 + 2] << 16) | \
  67. ((uint32_t)ptr[(n) * 4 + 3] << 24))
  68. #define GET(n) \
  69. (block[(n)])
  70. /*
  71. * This processes one or more 64-byte data blocks, but does NOT update the bit
  72. * counters. There are no alignment requirements.
  73. */
  74. static const unsigned char *body(fz_md5 *ctx, const unsigned char *ptr, uint32_t size)
  75. {
  76. uint32_t a, b, c, d;
  77. uint32_t saved_a, saved_b, saved_c, saved_d;
  78. uint32_t block[16];
  79. a = ctx->a;
  80. b = ctx->b;
  81. c = ctx->c;
  82. d = ctx->d;
  83. do {
  84. saved_a = a;
  85. saved_b = b;
  86. saved_c = c;
  87. saved_d = d;
  88. /* Round 1 */
  89. STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7);
  90. STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12);
  91. STEP(F, c, d, a, b, SET(2), 0x242070db, 17);
  92. STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22);
  93. STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7);
  94. STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12);
  95. STEP(F, c, d, a, b, SET(6), 0xa8304613, 17);
  96. STEP(F, b, c, d, a, SET(7), 0xfd469501, 22);
  97. STEP(F, a, b, c, d, SET(8), 0x698098d8, 7);
  98. STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12);
  99. STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
  100. STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
  101. STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
  102. STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
  103. STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
  104. STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);
  105. /* Round 2 */
  106. STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5);
  107. STEP(G, d, a, b, c, GET(6), 0xc040b340, 9);
  108. STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
  109. STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20);
  110. STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5);
  111. STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
  112. STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
  113. STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20);
  114. STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5);
  115. STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
  116. STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14);
  117. STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20);
  118. STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
  119. STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9);
  120. STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14);
  121. STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);
  122. /* Round 3 */
  123. STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4);
  124. STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11);
  125. STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
  126. STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23);
  127. STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4);
  128. STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11);
  129. STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16);
  130. STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23);
  131. STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
  132. STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11);
  133. STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16);
  134. STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23);
  135. STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4);
  136. STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11);
  137. STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
  138. STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23);
  139. /* Round 4 */
  140. STEP(I, a, b, c, d, GET(0), 0xf4292244, 6);
  141. STEP(I, d, a, b, c, GET(7), 0x432aff97, 10);
  142. STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
  143. STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21);
  144. STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
  145. STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10);
  146. STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
  147. STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21);
  148. STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6);
  149. STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
  150. STEP(I, c, d, a, b, GET(6), 0xa3014314, 15);
  151. STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
  152. STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6);
  153. STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
  154. STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15);
  155. STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21);
  156. a += saved_a;
  157. b += saved_b;
  158. c += saved_c;
  159. d += saved_d;
  160. ptr += 64;
  161. } while (size -= 64);
  162. ctx->a = a;
  163. ctx->b = b;
  164. ctx->c = c;
  165. ctx->d = d;
  166. return ptr;
  167. }
  168. void fz_md5_init(fz_md5 *ctx)
  169. {
  170. ctx->a = 0x67452301;
  171. ctx->b = 0xefcdab89;
  172. ctx->c = 0x98badcfe;
  173. ctx->d = 0x10325476;
  174. ctx->lo = 0;
  175. ctx->hi = 0;
  176. }
  177. void fz_md5_update(fz_md5 *ctx, const unsigned char *data, size_t size)
  178. {
  179. uint32_t saved_lo;
  180. uint32_t used, available;
  181. saved_lo = ctx->lo;
  182. if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
  183. ctx->hi++;
  184. ctx->hi += (uint32_t)(size >> 29);
  185. used = saved_lo & 0x3f;
  186. if (used) {
  187. available = 64 - used;
  188. if (size < available) {
  189. memcpy(&ctx->buffer[used], data, size);
  190. return;
  191. }
  192. memcpy(&ctx->buffer[used], data, available);
  193. data = data + available;
  194. size -= available;
  195. body(ctx, ctx->buffer, 64);
  196. }
  197. if (size >= 64) {
  198. data = body(ctx, data, size & ~(uint32_t)0x3f);
  199. size &= 0x3f;
  200. }
  201. memcpy(ctx->buffer, data, size);
  202. }
  203. #define OUT(dst, src) \
  204. (dst)[0] = (src); \
  205. (dst)[1] = (src >> 8); \
  206. (dst)[2] = (src >> 16); \
  207. (dst)[3] = (src >> 24)
  208. void fz_md5_final(fz_md5 *ctx, unsigned char result[16])
  209. {
  210. uint32_t used, available;
  211. used = ctx->lo & 0x3f;
  212. ctx->buffer[used++] = 0x80;
  213. available = 64 - used;
  214. if (available < 8) {
  215. memset(&ctx->buffer[used], 0, available);
  216. body(ctx, ctx->buffer, 64);
  217. used = 0;
  218. available = 64;
  219. }
  220. memset(&ctx->buffer[used], 0, available - 8);
  221. ctx->lo <<= 3;
  222. OUT(&ctx->buffer[56], ctx->lo);
  223. OUT(&ctx->buffer[60], ctx->hi);
  224. body(ctx, ctx->buffer, 64);
  225. OUT(&result[0], ctx->a);
  226. OUT(&result[4], ctx->b);
  227. OUT(&result[8], ctx->c);
  228. OUT(&result[12], ctx->d);
  229. memset(ctx, 0, sizeof(*ctx));
  230. }
  231. void fz_md5_update_int64(fz_md5 *context, int64_t i)
  232. {
  233. unsigned char c[8];
  234. c[0] = (unsigned char)(i);
  235. c[1] = (unsigned char)(i>>8);
  236. c[2] = (unsigned char)(i>>16);
  237. c[3] = (unsigned char)(i>>24);
  238. c[4] = (unsigned char)(i>>32);
  239. c[5] = (unsigned char)(i>>40);
  240. c[6] = (unsigned char)(i>>48);
  241. c[7] = (unsigned char)(i>>56);
  242. fz_md5_update(context, &c[0], sizeof(c));
  243. }