| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481 |
- // Copyright (C) 2004-2021 Artifex Software, Inc.
- //
- // This file is part of MuPDF.
- //
- // MuPDF is free software: you can redistribute it and/or modify it under the
- // terms of the GNU Affero General Public License as published by the Free
- // Software Foundation, either version 3 of the License, or (at your option)
- // any later version.
- //
- // MuPDF is distributed in the hope that it will be useful, but WITHOUT ANY
- // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- // FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
- // details.
- //
- // You should have received a copy of the GNU Affero General Public License
- // along with MuPDF. If not, see <https://www.gnu.org/licenses/agpl-3.0.en.html>
- //
- // Alternative licensing terms are available from the licensor.
- // For commercial licensing, see <https://www.artifex.com/> or contact
- // Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
- // CA 94129, USA, for further information.
- #include "mupdf/fitz.h"
- #include <assert.h>
- #include <errno.h>
- #include <float.h>
- #ifndef INFINITY
- #define INFINITY (DBL_MAX+DBL_MAX)
- #endif
- #ifndef NAN
- #define NAN (INFINITY-INFINITY)
- #endif
- /*
- We use "Algorithm D" from "Contributions to a Proposed Standard for Binary
- Floating-Point Arithmetic" by Jerome Coonen (1984).
- The implementation uses a self-made floating point type, 'strtof_fp_t', with
- a 32-bit significand. The steps of the algorithm are
- INPUT: Up to 9 decimal digits d1, ... d9 and an exponent dexp.
- OUTPUT: A float corresponding to the number d1 ... d9 * 10^dexp.
- 1) Convert the integer d1 ... d9 to an strtof_fp_t x.
- 2) Lookup the strtof_fp_t power = 10 ^ |dexp|.
- 3) If dexp is positive set x = x * power, else set x = x / power. Use rounding mode 'round to odd'.
- 4) Round x to a float using rounding mode 'to even'.
- Step 1) is always lossless as the strtof_fp_t's significand can hold a 9-digit integer.
- In the case |dexp| <= 13 the cached power is exact and the algorithm returns
- the exactly rounded result (with rounding mode 'to even').
- There is no double-rounding in 3), 4) as the multiply/divide uses 'round to odd'.
- For |dexp| > 13 the maximum error is bounded by (1/2 + 1/256) ulp.
- This is small enough to ensure that binary to decimal to binary conversion
- is the identity if the decimal format uses 9 correctly rounded significant digits.
- */
- typedef struct strtof_fp_t
- {
- uint32_t f;
- int e;
- } strtof_fp_t;
- /* Multiply/Divide x by y with 'round to odd'. Assume that x and y are normalized. */
- static strtof_fp_t
- strtof_multiply(strtof_fp_t x, strtof_fp_t y)
- {
- uint64_t tmp;
- strtof_fp_t res;
- assert(x.f & y.f & 0x80000000);
- res.e = x.e + y.e + 32;
- tmp = (uint64_t) x.f * y.f;
- /* Normalize. */
- if ((tmp < ((uint64_t) 1 << 63)))
- {
- tmp <<= 1;
- --res.e;
- }
- res.f = tmp >> 32;
- /* Set the last bit of the significand to 1 if the result is
- inexact. */
- if (tmp & 0xffffffff)
- res.f |= 1;
- return res;
- }
- static strtof_fp_t
- divide(strtof_fp_t x, strtof_fp_t y)
- {
- uint64_t product, quotient;
- uint32_t remainder;
- strtof_fp_t res;
- res.e = x.e - y.e - 32;
- product = (uint64_t) x.f << 32;
- quotient = product / y.f;
- remainder = product % y.f;
- /* 2^31 <= quotient <= 2^33 - 2. */
- if (quotient <= 0xffffffff)
- res.f = quotient;
- else
- {
- ++res.e;
- /* If quotient % 2 != 0 we have remainder != 0. */
- res.f = quotient >> 1;
- }
- if (remainder)
- res.f |= 1;
- return res;
- }
- /* From 10^0 to 10^54. Generated with GNU MPFR. */
- static const uint32_t strtof_powers_ten[55] = {
- 0x80000000, 0xa0000000, 0xc8000000, 0xfa000000, 0x9c400000, 0xc3500000,
- 0xf4240000, 0x98968000, 0xbebc2000, 0xee6b2800, 0x9502f900, 0xba43b740,
- 0xe8d4a510, 0x9184e72a, 0xb5e620f4, 0xe35fa932, 0x8e1bc9bf, 0xb1a2bc2f,
- 0xde0b6b3a, 0x8ac72305, 0xad78ebc6, 0xd8d726b7, 0x87867832, 0xa968163f,
- 0xd3c21bcf, 0x84595161, 0xa56fa5ba, 0xcecb8f28, 0x813f3979, 0xa18f07d7,
- 0xc9f2c9cd, 0xfc6f7c40, 0x9dc5ada8, 0xc5371912, 0xf684df57, 0x9a130b96,
- 0xc097ce7c, 0xf0bdc21b, 0x96769951, 0xbc143fa5, 0xeb194f8e, 0x92efd1b9,
- 0xb7abc627, 0xe596b7b1, 0x8f7e32ce, 0xb35dbf82, 0xe0352f63, 0x8c213d9e,
- 0xaf298d05, 0xdaf3f046, 0x88d8762c, 0xab0e93b7, 0xd5d238a5, 0x85a36367,
- 0xa70c3c41
- };
- static const int strtof_powers_ten_e[55] = {
- -31, -28, -25, -22, -18, -15, -12, -8, -5, -2,
- 2, 5, 8, 12, 15, 18, 22, 25, 28, 32, 35, 38, 42, 45, 48, 52, 55, 58, 62, 65,
- 68, 71, 75, 78, 81, 85, 88, 91, 95, 98, 101, 105, 108, 111, 115, 118, 121,
- 125, 128, 131, 135, 138, 141, 145, 148
- };
- static strtof_fp_t
- strtof_cached_power(int i)
- {
- strtof_fp_t result;
- assert (i >= 0 && i <= 54);
- result.f = strtof_powers_ten[i];
- result.e = strtof_powers_ten_e[i];
- return result;
- }
- /* Find number of leading zero bits in an uint32_t. Derived from the
- "Bit Twiddling Hacks" at graphics.stanford.edu/~seander/bithacks.html. */
- static unsigned char clz_table[256] = {
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- # define sixteen_times(N) N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
- sixteen_times (3) sixteen_times (2) sixteen_times (2)
- sixteen_times (1) sixteen_times (1) sixteen_times (1) sixteen_times (1)
- /* Zero for the rest. */
- };
- static unsigned
- leading_zeros (uint32_t x)
- {
- unsigned tmp1, tmp2;
- tmp1 = x >> 16;
- if (tmp1)
- {
- tmp2 = tmp1 >> 8;
- if (tmp2)
- return clz_table[tmp2];
- else
- return 8 + clz_table[tmp1];
- }
- else
- {
- tmp1 = x >> 8;
- if (tmp1)
- return 16 + clz_table[tmp1];
- else
- return 24 + clz_table[x];
- }
- }
- static strtof_fp_t
- uint32_to_diy (uint32_t x)
- {
- strtof_fp_t result = {x, 0};
- unsigned shift = leading_zeros(x);
- result.f <<= shift;
- result.e -= shift;
- return result;
- }
- #define SP_SIGNIFICAND_SIZE 23
- #define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)
- #define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)
- #define SP_EXPONENT_MASK 0x7f800000
- #define SP_SIGNIFICAND_MASK 0x7fffff
- #define SP_HIDDEN_BIT 0x800000 /* 2^23 */
- /* Convert normalized strtof_fp_t to IEEE-754 single with 'round to even'.
- See "Implementing IEEE 754-2008 Rounding" in the
- "Handbook of Floating-Point Arithmetik".
- */
- static float
- diy_to_float(strtof_fp_t x, int negative)
- {
- uint32_t result;
- union
- {
- float f;
- uint32_t n;
- } tmp;
- assert(x.f & 0x80000000);
- /* We have 2^32 - 2^7 = 0xffffff80. */
- if (x.e > 96 || (x.e == 96 && x.f >= 0xffffff80))
- {
- /* Overflow. Set result to infinity. */
- errno = ERANGE;
- result = 0xff << SP_SIGNIFICAND_SIZE;
- }
- /* We have 2^32 - 2^8 = 0xffffff00. */
- else if (x.e > -158)
- {
- /* x is greater or equal to FLT_MAX. So we get a normalized number. */
- result = (uint32_t) (x.e + 158) << SP_SIGNIFICAND_SIZE;
- result |= (x.f >> 8) & SP_SIGNIFICAND_MASK;
- if (x.f & 0x80)
- {
- /* Round-bit is set. */
- if (x.f & 0x7f)
- /* Sticky-bit is set. */
- ++result;
- else if (x.f & 0x100)
- /* Significand is odd. */
- ++result;
- }
- }
- else if (x.e == -158 && x.f >= 0xffffff00)
- {
- /* x is in the range (2^32, 2^32 - 2^8] * 2^-158, so its smaller than
- FLT_MIN but still rounds to it. */
- result = 1U << SP_SIGNIFICAND_SIZE;
- }
- else if (x.e > -181)
- {
- /* Non-zero Denormal. */
- int shift = -149 - x.e; /* 9 <= shift <= 31. */
- result = x.f >> shift;
- if (x.f & (1U << (shift - 1)))
- /* Round-bit is set. */
- {
- if (x.f & ((1U << (shift - 1)) - 1))
- /* Sticky-bit is set. */
- ++result;
- else if (x.f & 1U << shift)
- /* Significand is odd. */
- ++result;
- }
- }
- else if (x.e == -181 && x.f > 0x80000000)
- {
- /* x is in the range (0.5,1) * 2^-149 so it rounds to the smallest
- denormal. Can't handle this in the previous case as shifting a
- uint32_t 32 bits to the right is undefined behaviour. */
- result = 1;
- }
- else
- {
- /* Underflow. */
- errno = ERANGE;
- result = 0;
- }
- if (negative)
- result |= 0x80000000;
- tmp.n = result;
- return tmp.f;
- }
- static float
- scale_integer_to_float(uint32_t M, int N, int negative)
- {
- strtof_fp_t result, x, power;
- if (M == 0)
- return negative ? -0.f : 0.f;
- if (N > 38)
- {
- /* Overflow. */
- errno = ERANGE;
- return negative ? -INFINITY : INFINITY;
- }
- if (N < -54)
- {
- /* Underflow. */
- errno = ERANGE;
- return negative ? -0.f : 0.f;
- }
- /* If N is in the range {-13, ..., 13} the conversion is exact.
- Try to scale N into this region. */
- while (N > 13 && M <= 0xffffffff / 10)
- {
- M *= 10;
- --N;
- }
- while (N < -13 && M % 10 == 0)
- {
- M /= 10;
- ++N;
- }
- x = uint32_to_diy (M);
- if (N >= 0)
- {
- power = strtof_cached_power(N);
- result = strtof_multiply(x, power);
- }
- else
- {
- power = strtof_cached_power(-N);
- result = divide(x, power);
- }
- return diy_to_float(result, negative);
- }
- /* Return non-zero if *s starts with string (must be uppercase), ignoring case,
- and increment *s by its length. */
- static int
- starts_with(const char **s, const char *string)
- {
- const char *x = *s, *y = string;
- while (*x && *y && (*x == *y || *x == *y + 32))
- ++x, ++y;
- if (*y == 0)
- {
- /* Match. */
- *s = x;
- return 1;
- }
- else
- return 0;
- }
- #define SET_TAILPTR(tailptr, s) \
- do \
- if (tailptr) \
- *tailptr = (char *) s; \
- while (0)
- float
- fz_strtof(const char *string, char **tailptr)
- {
- /* FIXME: error (1/2 + 1/256) ulp */
- const char *s;
- uint32_t M = 0;
- int N = 0;
- /* If decimal_digits gets 9 we truncate all following digits. */
- int decimal_digits = 0;
- int negative = 0;
- const char *number_start = 0;
- /* Skip leading whitespace (isspace in "C" locale). */
- s = string;
- while (*s == ' ' || *s == '\f' || *s == '\n' || *s == '\r' || *s == '\t' || *s == '\v')
- ++s;
- /* Parse sign. */
- if (*s == '+')
- ++s;
- if (*s == '-')
- {
- negative = 1;
- ++s;
- }
- number_start = s;
- /* Parse digits before decimal point. */
- while (*s >= '0' && *s <= '9')
- {
- if (decimal_digits)
- {
- if (decimal_digits < 9)
- {
- ++decimal_digits;
- M = M * 10 + *s - '0';
- }
- /* Really arcane strings might overflow N. */
- else if (N < 1000)
- ++N;
- }
- else if (*s > '0')
- {
- M = *s - '0';
- ++decimal_digits;
- }
- ++s;
- }
- /* Parse decimal point. */
- if (*s == '.')
- ++s;
- /* Parse digits after decimal point. */
- while (*s >= '0' && *s <= '9')
- {
- if (decimal_digits < 9)
- {
- if (decimal_digits || *s > '0')
- {
- ++decimal_digits;
- M = M * 10 + *s - '0';
- }
- --N;
- }
- ++s;
- }
- if ((s == number_start + 1 && *number_start == '.') || number_start == s)
- {
- /* No Number. Check for INF and NAN strings. */
- s = number_start;
- if (starts_with(&s, "INFINITY") || starts_with(&s, "INF"))
- {
- errno = ERANGE;
- SET_TAILPTR(tailptr, s);
- return negative ? -INFINITY : +INFINITY;
- }
- else if (starts_with(&s, "NAN"))
- {
- SET_TAILPTR(tailptr, s);
- return (float)NAN;
- }
- else
- {
- SET_TAILPTR(tailptr, string);
- return 0.f;
- }
- }
- /* Parse exponent. */
- if (*s == 'e' || *s == 'E')
- {
- int exp_negative = 0;
- int exp = 0;
- const char *int_start;
- const char *exp_start = s;
- ++s;
- if (*s == '+')
- ++s;
- else if (*s == '-')
- {
- ++s;
- exp_negative = 1;
- }
- int_start = s;
- /* Parse integer. */
- while (*s >= '0' && *s <= '9')
- {
- /* Make sure exp does not get overflowed. */
- if (exp < 100)
- exp = exp * 10 + *s - '0';
- ++s;
- }
- if (exp_negative)
- exp = -exp;
- if (s == int_start)
- /* No Number. */
- s = exp_start;
- else
- N += exp;
- }
- SET_TAILPTR(tailptr, s);
- return scale_integer_to_float(M, N, negative);
- }
|