| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- // (C) Copyright 2017, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Although this is a trivial-looking test, it exercises a lot of code:
- // SampleIterator has to correctly iterate over the correct characters, or
- // it will fail.
- // The canonical and cloud features computed by TrainingSampleSet need to
- // be correct, along with the distance caches, organizing samples by font
- // and class, indexing of features, distance calculations.
- // IntFeatureDist has to work, or the canonical samples won't work.
- // Mastertrainer has ability to read tr files and set itself up tested.
- // Finally the serialize/deserialize test ensures that MasterTrainer,
- // TrainingSampleSet, TrainingSample can all serialize/deserialize correctly
- // enough to reproduce the same results.
- #include "include_gunit.h"
- #include "commontraining.h"
- #include "errorcounter.h"
- #include "log.h" // for LOG
- #include "mastertrainer.h"
- #include "shapeclassifier.h"
- #include "shapetable.h"
- #include "trainingsample.h"
- #include "unicharset.h"
- #include <string>
- #include <utility>
- #include <vector>
- using namespace tesseract;
- // Specs of the MockClassifier.
- static const int kNumTopNErrs = 10;
- static const int kNumTop2Errs = kNumTopNErrs + 20;
- static const int kNumTop1Errs = kNumTop2Errs + 30;
- static const int kNumTopTopErrs = kNumTop1Errs + 25;
- static const int kNumNonReject = 1000;
- static const int kNumCorrect = kNumNonReject - kNumTop1Errs;
- // The total number of answers is given by the number of non-rejects plus
- // all the multiple answers.
- static const int kNumAnswers = kNumNonReject + 2 * (kNumTop2Errs - kNumTopNErrs) +
- (kNumTop1Errs - kNumTop2Errs) + (kNumTopTopErrs - kNumTop1Errs);
- #ifndef DISABLED_LEGACY_ENGINE
- static bool safe_strto32(const std::string &str, int *pResult) {
- long n = strtol(str.c_str(), nullptr, 0);
- *pResult = n;
- return true;
- }
- #endif
- // Mock ShapeClassifier that cheats by looking at the correct answer, and
- // creates a specific pattern of errors that can be tested.
- class MockClassifier : public ShapeClassifier {
- public:
- explicit MockClassifier(ShapeTable *shape_table)
- : shape_table_(shape_table), num_done_(0), done_bad_font_(false) {
- // Add a false font answer to the shape table. We pick a random unichar_id,
- // add a new shape for it with a false font. Font must actually exist in
- // the font table, but not match anything in the first 1000 samples.
- false_unichar_id_ = 67;
- false_shape_ = shape_table_->AddShape(false_unichar_id_, 25);
- }
- ~MockClassifier() override = default;
- // Classifies the given [training] sample, writing to results.
- // If debug is non-zero, then various degrees of classifier dependent debug
- // information is provided.
- // If keep_this (a shape index) is >= 0, then the results should always
- // contain keep_this, and (if possible) anything of intermediate confidence.
- // The return value is the number of classes saved in results.
- int ClassifySample(const TrainingSample &sample, Image page_pix, int debug, UNICHAR_ID keep_this,
- std::vector<ShapeRating> *results) override {
- results->clear();
- // Everything except the first kNumNonReject is a reject.
- if (++num_done_ > kNumNonReject) {
- return 0;
- }
- int class_id = sample.class_id();
- int font_id = sample.font_id();
- int shape_id = shape_table_->FindShape(class_id, font_id);
- // Get ids of some wrong answers.
- int wrong_id1 = shape_id > 10 ? shape_id - 1 : shape_id + 1;
- int wrong_id2 = shape_id > 10 ? shape_id - 2 : shape_id + 2;
- if (num_done_ <= kNumTopNErrs) {
- // The first kNumTopNErrs are top-n errors.
- results->push_back(ShapeRating(wrong_id1, 1.0f));
- } else if (num_done_ <= kNumTop2Errs) {
- // The next kNumTop2Errs - kNumTopNErrs are top-2 errors.
- results->push_back(ShapeRating(wrong_id1, 1.0f));
- results->push_back(ShapeRating(wrong_id2, 0.875f));
- results->push_back(ShapeRating(shape_id, 0.75f));
- } else if (num_done_ <= kNumTop1Errs) {
- // The next kNumTop1Errs - kNumTop2Errs are top-1 errors.
- results->push_back(ShapeRating(wrong_id1, 1.0f));
- results->push_back(ShapeRating(shape_id, 0.8f));
- } else if (num_done_ <= kNumTopTopErrs) {
- // The next kNumTopTopErrs - kNumTop1Errs are cases where the actual top
- // is not correct, but do not count as a top-1 error because the rating
- // is close enough to the top answer.
- results->push_back(ShapeRating(wrong_id1, 1.0f));
- results->push_back(ShapeRating(shape_id, 0.99f));
- } else if (!done_bad_font_ && class_id == false_unichar_id_) {
- // There is a single character with a bad font.
- results->push_back(ShapeRating(false_shape_, 1.0f));
- done_bad_font_ = true;
- } else {
- // Everything else is correct.
- results->push_back(ShapeRating(shape_id, 1.0f));
- }
- return results->size();
- }
- // Provides access to the ShapeTable that this classifier works with.
- const ShapeTable *GetShapeTable() const override {
- return shape_table_;
- }
- private:
- // Borrowed pointer to the ShapeTable.
- ShapeTable *shape_table_;
- // Unichar_id of a random character that occurs after the first 60 samples.
- int false_unichar_id_;
- // Shape index of prepared false answer for false_unichar_id.
- int false_shape_;
- // The number of classifications we have processed.
- int num_done_;
- // True after the false font has been emitted.
- bool done_bad_font_;
- };
- const double kMin1lDistance = 0.25;
- // The fixture for testing Tesseract.
- class MasterTrainerTest : public testing::Test {
- #ifndef DISABLED_LEGACY_ENGINE
- protected:
- void SetUp() override {
- std::locale::global(std::locale(""));
- file::MakeTmpdir();
- }
- std::string TestDataNameToPath(const std::string &name) {
- return file::JoinPath(TESTING_DIR, name);
- }
- std::string TmpNameToPath(const std::string &name) {
- return file::JoinPath(FLAGS_test_tmpdir, name);
- }
- MasterTrainerTest() :
- shape_table_(nullptr),
- master_trainer_(nullptr) {
- }
- ~MasterTrainerTest() override {
- delete shape_table_;
- }
- // Initializes the master_trainer_ and shape_table_.
- // if load_from_tmp, then reloads a master trainer that was saved by a
- // previous call in which it was false.
- void LoadMasterTrainer() {
- FLAGS_output_trainer = TmpNameToPath("tmp_trainer").c_str();
- FLAGS_F = file::JoinPath(LANGDATA_DIR, "font_properties").c_str();
- FLAGS_X = TestDataNameToPath("eng.xheights").c_str();
- FLAGS_U = TestDataNameToPath("eng.unicharset").c_str();
- std::string tr_file_name(TestDataNameToPath("eng.Arial.exp0.tr"));
- const char *filelist[] = {tr_file_name.c_str(), nullptr};
- std::string file_prefix;
- delete shape_table_;
- shape_table_ = nullptr;
- master_trainer_ = LoadTrainingData(filelist, false, &shape_table_, file_prefix);
- EXPECT_TRUE(master_trainer_ != nullptr);
- EXPECT_TRUE(shape_table_ != nullptr);
- }
- // EXPECTs that the distance between I and l in Arial is 0 and that the
- // distance to 1 is significantly not 0.
- void VerifyIl1() {
- // Find the font id for Arial.
- int font_id = master_trainer_->GetFontInfoId("Arial");
- EXPECT_GE(font_id, 0);
- // Track down the characters we are interested in.
- int unichar_I = master_trainer_->unicharset().unichar_to_id("I");
- EXPECT_GT(unichar_I, 0);
- int unichar_l = master_trainer_->unicharset().unichar_to_id("l");
- EXPECT_GT(unichar_l, 0);
- int unichar_1 = master_trainer_->unicharset().unichar_to_id("1");
- EXPECT_GT(unichar_1, 0);
- // Now get the shape ids.
- int shape_I = shape_table_->FindShape(unichar_I, font_id);
- EXPECT_GE(shape_I, 0);
- int shape_l = shape_table_->FindShape(unichar_l, font_id);
- EXPECT_GE(shape_l, 0);
- int shape_1 = shape_table_->FindShape(unichar_1, font_id);
- EXPECT_GE(shape_1, 0);
- float dist_I_l = master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_l);
- // No tolerance here. We expect that I and l should match exactly.
- EXPECT_EQ(0.0f, dist_I_l);
- float dist_l_I = master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_I);
- // BOTH ways.
- EXPECT_EQ(0.0f, dist_l_I);
- // l/1 on the other hand should be distinct.
- float dist_l_1 = master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_1);
- EXPECT_GT(dist_l_1, kMin1lDistance);
- float dist_1_l = master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_l);
- EXPECT_GT(dist_1_l, kMin1lDistance);
- // So should I/1.
- float dist_I_1 = master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_1);
- EXPECT_GT(dist_I_1, kMin1lDistance);
- float dist_1_I = master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_I);
- EXPECT_GT(dist_1_I, kMin1lDistance);
- }
- // Objects declared here can be used by all tests in the test case for Foo.
- ShapeTable *shape_table_;
- std::unique_ptr<MasterTrainer> master_trainer_;
- #endif
- };
- // Tests that the MasterTrainer correctly loads its data and reaches the correct
- // conclusion over the distance between Arial I l and 1.
- TEST_F(MasterTrainerTest, Il1Test) {
- #ifdef DISABLED_LEGACY_ENGINE
- // Skip test because LoadTrainingData is missing.
- GTEST_SKIP();
- #else
- // Initialize the master_trainer_ and load the Arial tr file.
- LoadMasterTrainer();
- VerifyIl1();
- #endif
- }
- // Tests the ErrorCounter using a MockClassifier to check that it counts
- // error categories correctly.
- TEST_F(MasterTrainerTest, ErrorCounterTest) {
- #ifdef DISABLED_LEGACY_ENGINE
- // Skip test because LoadTrainingData is missing.
- GTEST_SKIP();
- #else
- // Initialize the master_trainer_ from the saved tmp file.
- LoadMasterTrainer();
- // Add the space character to the shape_table_ if not already present to
- // count junk.
- if (shape_table_->FindShape(0, -1) < 0) {
- shape_table_->AddShape(0, 0);
- }
- // Make a mock classifier.
- auto shape_classifier = std::make_unique<MockClassifier>(shape_table_);
- // Get the accuracy report.
- std::string accuracy_report;
- master_trainer_->TestClassifierOnSamples(tesseract::CT_UNICHAR_TOP1_ERR, 0, false,
- shape_classifier.get(), &accuracy_report);
- LOG(INFO) << accuracy_report.c_str();
- std::string result_string = accuracy_report.c_str();
- std::vector<std::string> results = split(result_string, '\t');
- EXPECT_EQ(tesseract::CT_SIZE + 1, results.size());
- int result_values[tesseract::CT_SIZE];
- for (int i = 0; i < tesseract::CT_SIZE; ++i) {
- EXPECT_TRUE(safe_strto32(results[i + 1], &result_values[i]));
- }
- // These tests are more-or-less immune to additions to the number of
- // categories or changes in the training data.
- int num_samples = master_trainer_->GetSamples()->num_raw_samples();
- EXPECT_EQ(kNumCorrect, result_values[tesseract::CT_UNICHAR_TOP_OK]);
- EXPECT_EQ(1, result_values[tesseract::CT_FONT_ATTR_ERR]);
- EXPECT_EQ(kNumTopTopErrs, result_values[tesseract::CT_UNICHAR_TOPTOP_ERR]);
- EXPECT_EQ(kNumTop1Errs, result_values[tesseract::CT_UNICHAR_TOP1_ERR]);
- EXPECT_EQ(kNumTop2Errs, result_values[tesseract::CT_UNICHAR_TOP2_ERR]);
- EXPECT_EQ(kNumTopNErrs, result_values[tesseract::CT_UNICHAR_TOPN_ERR]);
- // Each of the TOPTOP errs also counts as a multi-unichar.
- EXPECT_EQ(kNumTopTopErrs - kNumTop1Errs, result_values[tesseract::CT_OK_MULTI_UNICHAR]);
- EXPECT_EQ(num_samples - kNumNonReject, result_values[tesseract::CT_REJECT]);
- EXPECT_EQ(kNumAnswers, result_values[tesseract::CT_NUM_RESULTS]);
- #endif
- }
|